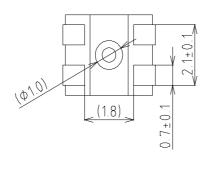
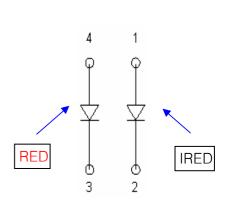

1. Features


- Surface-mount device
- Package : 3.5(L) x 2.8(W) x 1.8(H) mm
- Viewing angle: ±60°
- Technology: RED : AlInGaP
- Soldering Method: IR reflow soldering
- Taping: 8mm tape with 2,000pcs / reel , Φ180mm
- Applications
 - -Backlighting (LCD, Switches, Displays)
 - -Signal and symbol luminary
 - -Interior automotive light
 - -Front panel indicator lamps

2. Package outline



 $\langle \$

3. Maximum Ratings (Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Power Dissipation	P _D	75	mW
Forward Current	I _F	30	mA
Peak Forward Current ^{*1} (1/10 Duty Cycle, 0.1ms Pluse Width)	I _{FP}	100	mA
Reverse Voltage	V _R	5	V
Operating Temperature Range	T _{opr}	-30℃ to +85℃	ĉ
Storage Temperature Range	T _{stg}	-30℃ to +100℃	°C
Lead Soldering Temperature	Rth _{JS}	240 ℃ for 5Seconds	-

*1. Duty Ratio=1/10, Pulse Width=0.1ms

4. Electrical/Optical Characteristics (Ta=25 ℃)

PARAMETER	COLOR	SYMBOL	ST CONDIT	MIN.	TYP.	MAX.	UNIT	
1	Red	1	-20	I _F =20mA	60	-	100	mcd
Luminous Intensity *1	IRED	IV	1F-2011A	400	-	500	mcu	
е н и *2	Red	V _F I _F =20mA	1.7	-	2.0	V		
Forward voltage *2	IRED	vF		1.2	-	1.5	V	
Reverse Current	-	I _R	V _R =5V	Z	enner prote	ct	μA	
Deminent Wayslangth*3	Red	Red	I _F =20mA	635	-	650	nm	
Dominant Wavelength ^{*3}	IRED	λ _D	1 _F =2011A	885	-	900	nm	
Half Angle *4	-	Θ _{1/2}	I _F =20mA	-	±60	-	deg	

- *1. Luminous intensity was measured at the peak of the spatial patterm which may not be aligned with the meachanical axis of the LED package. Luminous intensity Measurement allowance is $\pm 10\%$.
- *2. Voltages are tested at a current pulse duration of 1ms and accuracy of ± 0.05 V.
- *3. Dominant wavelength is tested at a current pulse duration of 20ms and accuracy of \pm 2nm.
- *4. 2 \ominus _{1/2} is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

5. Typical Electrical/Optical Characteristics Curves

Fig. 2> I_F-Ta

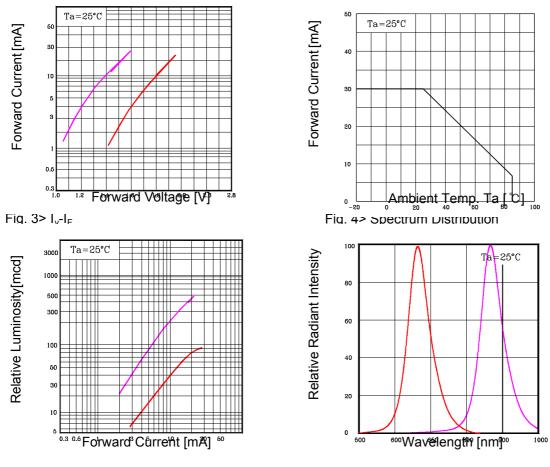
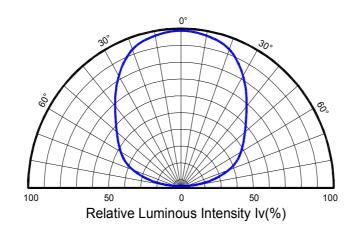
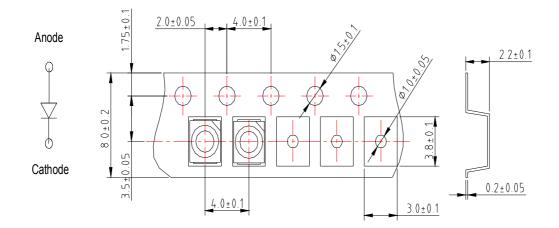
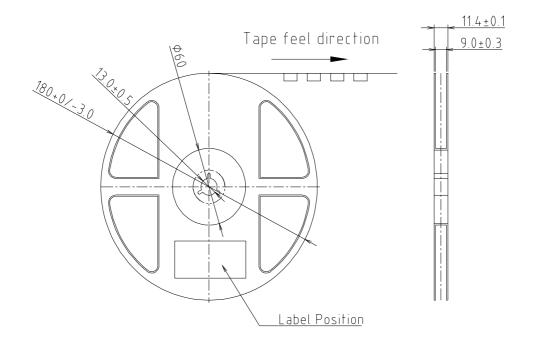



Fig. 5> Radiation Diagram

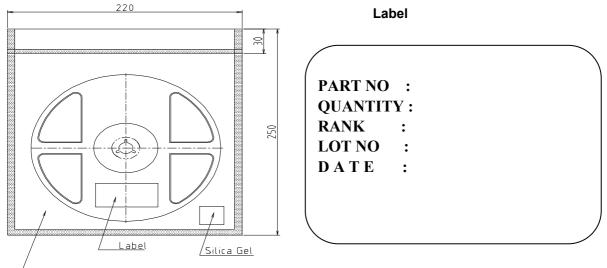




6. Packing Specifications

6-1. Carrier Tape Dimensions

6-2. Reel Dimensions



6-3. Packing Method

* Each reel is sealed in an antistactic shielding bag with silica gel.

/ AntiStatic Shielding Bag

Packing unit	Size(WxLxD)	Quantity
Antistatic shielding bag (1 Reel)	220x250mm	2,000ea
Inner carton box (10 Reel)	220x220x145mm	20,000ea
Out carton box (40 Reel)	450x300x230mm	80,000ea

CAUTIONS

(1) Moisture Proof Package

The moisture proof package should be used ti prevent moisture in the package as the moisture may cause damage to optical characteristics of the LEDs.

for this reason, the moisture proof package is used to keep moisture to a minimum in the package.

a package of a moisture absorbent material (silica gel) is inserted into the shielding bag.

(2) Storage

Storage conditions

Before opening the packag:

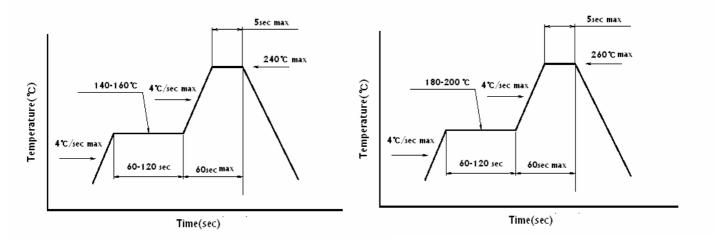
The LEDs should be kept at 30° C or less than 90%RH or less. The LEDs ahould be used within a year. when storing the LEDs, moisture proof packaging with absorbent meterial is recommended.

After opening the package:

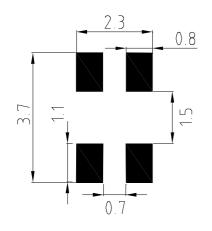
After open the package, the LED should be kept at 30°C, 60%RH or less. The LED should be soldered within 24 hours (1day) after opening the package. If unused LEDs remain, it should be stored in moisture proof condition.

If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time baking treatment should be performed using the following conditions.

Baking treatment : more than 48 hours at $60\pm5\,^\circ\!C$


7. IR Reflow Soldering

7-1. Solder conditions


	Reflow Soldering			Hand Soldering			
Lead solder		Lead	Lead-free Lead solder		Lead solder		l-free
Pre-heat	140~160℃	Pre-heat	180~200℃	Temperature 300 °C Max.		Temperature	350℃ Max.
Pre-heat time	60~120sec	Pre-heat time	60~120sec	Soldering Time	3 seconds Max.	Soldering Time	3 seconds Max.
Peak temperature	240℃ Max.	Peak temperature	260℃ Max.	(one Time only)			
Soldering time	5 sec Max.	Soldering time	5 sec Max.				

*After reflow soldering rapid cooling should be avoided.

- 7-2. Temperature profile
 - * Lead Solder

7-3. Recommended soldering pattern

8-4. Precaution when mounting
Do not apply force to the plastic part of the
LED under high-temperature conditions.
To avoid damaging the LED plastic do not
apply friction using hard materials.
When installing the PCB in product, ensure that
the device does not came into contact with
other components.

* Lead-Free Solder

8. Static Electricity

Static electricity or surge voltage damages the LEDs.

It's recommended that a wrist band or anti-electrostatic glove be used when handling the LEDs.

All devices, equipment and machinery should be properly grounded.

It's recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.

When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs be damaged by static electricity or not.

It is easy to find static-damaged LEDs by a light-on test or a VF test at a lower current.

(below 1mA is recommended)

Damaged LEDs will show some unusual characterisics such as the leak current remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low current.

9. Reliability Test

Test Item	Test Conditions	Sample Size(ea)
Solder Heating Test	T=260℃, 5sec	22
Solderability	T=250℃, 5sec	22
Thermal Cycle Test	-30℃~25℃~100℃~25℃ 30min 5min 30min 5min Time=500cycle	22
High Temperature Storage	Ta=100℃ Test time=1,000hr's	22
Low Temperature Storage	Ta=-30 ℃ Time=1,000hr's	22
Normal Temperature Life Test	Ta=25℃, I _F =20mA Time=1,000hr's	22
High Temperature Life Test	Ta=85℃, I _F =10mA Time=1,000hr's	22
High Humidity Heat Life Test	Ta=60 <i>℃</i> / RH=90% I _F = 10mA , Time=500hr's	22
ESD(Electro-static Discharge)	HBM(Human Body Model) C=100pF , R=1.5KΩ Discharge times: 3times	22

Criteria of failure for the reliability

Test Item	Symbol	Test Condition	Judgment Criteria
Forward Voltage	V _F	I _F =20mA	V _F > 1.1xU.S.L
Reverse Current	I _R	V _R =5V	I _R > 2.0xU.S.L
Luminous Intensity	Ι _V	I _F =20mA	I _V < 0.5xInitial value
ESD Rating	ESD	HBM	Class 2 or more

*1. U.S.L: Upper Standard Level

*2. Reverse current is applied to Red only

*3. ESD Rating forward directed by HBM. (Human Body Model)

10. Rank Sheet

10-1. Dominant Wavelength Rank.(I_F=20mA) (unit: nm, Ta=25 ℃)

Rank	COLOR	Min.	TYP.	Max.
1		635	-	640
2	RED	640	-	645
3		645	-	650
1		885	-	890
2	IRED	890	-	895
3		895	-	900

*1: Measurement Condition: 20mS pulse @I_F=20mA.

10-2. Luminous Intensity Rank.(I_F =20mA). (unit: mcd, Ta=25 °C)

Rank	COLOR	MIN	TYP.	Max.
A	RED	60	-	80
В	RED	80	-	100
С	IRED	400	-	500

10-3. Forward Voltage.(I_F=20mA).

(unit: V, Ta=25 ℃)

Rank	COLOR	MIN	TYP.	Max.
1	RED	1.7	-	2.0
2	IRED	1.2	-	1.5

Each product belongs to a rank for each sorting parameter.

Combination of the ranks composes sorting bins(ex. 1A1, 2A2, etc)

Products which belong to the same sorting bin are taped together.

Bin mixing is not allowed within a reel.